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• Experiments that use Rydberg atoms require 
excitation of Rydberg states 
 
• 1,2 and 3 photon techniques can be used to 
access low L Rydberg states (high L (circular) 
states involve special techniques) 
 

• For applications involving Quantum 
information it is generally necessary for the 
excitation to be fast, coherent and state 
selective 
 

• With modern laser systems coherent excitation 
is relatively straightforward 

Overview 
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One photon excitation rate 

Alkali atom  
ground state 

ns1/2 

np1/2   np3/2 

Additional complication mixed representations 
hyperfine – fine structure states 

Ω 



Radial matrix element 

Alkali atom  
ground state 

ns1/2 

np1/2   np3/2 

Apart the many angular factors we need to 
calculate radial integrals. 

Ω 



Scaling of radial integrals 

Alkali atom  
ground state 

ns1/2 

np1/2    
np3/2 Estimate integral in the limit n>>1: 

 
Integrand vanishes away from the origin.  
 
Assume Rydberg state ns, |Rns(0))|2~1/n3 

  
 
 
 

Scaling is valid for any low angular momentum Rydberg 
state.  This says optical power P ~ n3 at constant Ω 
 
Calculation methods: 
Semi-classical  (WKB)      (my favorite Kaulakys, J. Phys. B, 28, 4963 (1995)) 

Coulomb wave functions  (q.d. theory, Seaton) 

Model potentials 
 
Review: D.P. Dewangan, Physics Reports 511 (2012) 1–142 



Radial integral numerics 

Alkali atom  
ground state 

ns1/2 

np1/2    
np3/2 

r2R6s 
r2R50p 

50 a0 5000 a0 

Cs wavefunctions 

50 a0 

Integrand is 
localized near the 
core 



Radial integral numerics 

Cs 6s – np1/2  

WKB  (abs value) 

1/n3/2 

WKB 

Coulomb wavefns. 
(q.d. theory) 

• Asymptotic scaling is very good for n>50  
 

• WKB approximation about 2x too small.  
 

• WKB works much better for n,n’ both large (lecture 2) 
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Single photon excitation 

Alkali atom  
ground state 

ns1/2 

np1/2    
np3/2 

For high lying Rydberg levels wavelength 
is 297 nm for Rb, 319 nm for Cs.  
 
Not commonly done.  
 
Also strong Doppler sensitivity, we will 
come back to this. 
 
 



1 photon excitation 

Quantum interference in V system used to 
observe subDoppler linewidths 
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Two photon excitation 
With two photon scheme can use longer wavelengths.  
 
Less Doppler if we use counterpropagation. 
 
 
Drawback spontaneous emission from intermediate  
level. 
 
For large detuning from |p> the two-photon Rabi  
frequency is  
 
 
 
Spontaneous emission in π pulse 
 
 
 
Putting q=1   



Two photon excitation 

We found 
 
 
Thus 
 
 
If we have enough optical power we can have fast 
Rabi frequency with small spontaneous emission. 
 
Common wavelengths: 
 
Rb:   5p3/2: 780 nm, 480 nm 
         6p3/2: 420 nm, 1015 nm 
 
Cs:   6p3/2: 852 nm,   510 nm 
         7p3/2: 459 nm, 1038 nm 
 
Second resonance levels have smaller γp. 



Two photon excitation – design example for Rb 

Second resonance excitation of Rb has been implemented  here in Pisa.  
 

M. Saffman 2006 



Two photon excitation - headaches 
Doppler broadening: 

k1 

k2 

Copropagation: 
 
 
Take v=10 cm/s, λ1=780 nm, λ2=480 nm 



Doppler broadening example 
Doppler broadening: 

k2 

Copropagation: 
 
 
Take v=10 cm/s, λ1=780 nm, λ2=480 nm 

k1 

Counterpropagation: 
 
 

counter- 

co- 



Doppler broadening – time domain 
Rb 780+480 nm excitation, Ω/2π=1 MHz 
Integrate under Doppler curve. 

150 µK T=10 mK 

Upper gray line is spontaneous emission limit with 
Rydberg lifetime 300 µs,  n~ 90 

Copropagating/counterpropagating 



AC Stark shifts 
The two-photon transition is AC Stark shifted by the excitation beams. 
This gives sensitivity to intensity noise on lasers, atomic position under  
envelope of beam intensity. 

Low  
power 

high  
power 

Rb 55s 



AC Stark shifts 
The two-photon transition is AC Stark shifted by the excitation beams. 
This gives sensitivity to intensity noise on lasers, atomic position under  
envelope of beam intensity. 

Main contribution is 1st beam on ground 
state and 2nd beam on Rydberg state, 
i.e. near resonant interactions 
 
 
 
 
 
 
Choose Ω1=Ω2 to cancel.   



Doppler and AC Stark cancellation 
The Doppler shifts depend on velocity. The AC Stark shifts depend on  
detuning from |p>, which also depends on velocity.  
 
It is possible to make these two effects cancel each other.  
 

Interesting, but not that 
useful for coherent 
experiments since it 
requires tuning close to 
intermediate level 
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Three photon excitation 

Alkali atom  
ground state 

ns1/2 

np1/2  np3/2 

np1/2  np3/2  
nf5/2    nf7/2 

ns1/2   
nd3/2 nd5/2 

Gives access to np and nf, final states 
 
Can choose levels so all wavelengths can be derived 
from IR laser diodes. 
 
Can choose directions of k1, k2, k3 to cancel  
Doppler broadening.  

Coplanar solution 



Doppler broadening comparison 

Rb, Ω/2π=0.5 MHz 
 
 
 
Three photon scheme gives 
substantial Rydberg 
excitation even at room 
temperature  



3 photon excitation 

Pillet group 
 
Diode lasers or Ti:Sa 
 
 
 
 
About 10 MHz linewidth, 
may also be broadened 
by interactions  

Cs 



3 photon excitation with 2 photon degeneracy 

780 and 776 counterpropagating 
780 and 1256 copropagating 
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Experiments 
First experiments were in 1970s, 
1980s, for a review see  

Fabre, C., and S. Haroche, 1983, in Rydberg States of Atoms 
and Molecules, edited by R. F. Stebbings and F. B. Dunning 
Cambridge University Press, Cambridge, Chap. 4, p. 117. 

1973 data,  
resolution about 
0.1  nm 



Experiments 

1979 data,  
resolution about 10 GHz 6s 

7p3/2 

np 

455 nm 

7s 

810 nm 



2 photon excitation – Autler Townes splitting 

2003 data, resolution few MHz, 
Note, Rabi frequency depends on ground quantum state. 



2 photon excitation – Rabi oscillations 

~ 100 atoms 



Rabi oscillations in hot vapor cells 

Oscillations on nsec time 
scale ! 



Single atom Rabi oscillations 
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y Ω/2π = 0.36 MHz 

tπ= 1.4 µs 
amplitude=.96 



Experimental approach - UW Madison 

AOM tuning and 
fast pulse timing 

Reference cavity is 5 kHz linewidth, ULE spacer Fabry-Perot 
in temperature stabilized vacuum can.  
This gives long term stability < 100 kHz and ~200 Hz linewidths. 
Verified by beating two lasers together.  

Adv. At. Mol. Opt. Phys. 61, 81 (2012) 



State preparation and selection 
High fidelity oscillations require optical pumping to a single 
 initial state and Rydberg state selection. 

We start by pumping into f=2, mf=0. 
 
This hyperfine state is a 
superposition of electron spin up 
and spin down. 
 
The hyperfine interaction is 
negligible at n=100. With two σ+ 
photons we can excite  97d5/2 
mj=3/2 or mj=5/2. 
 
The Rabi frequency is different for 
these two end states which leads to 
non-sinusoidal oscillations.    



State preparation and selection 

5/2 
3/2 

97d5/2 

97d3/2 

High fidelity oscillations require optical pumping to a single 
 initial state and Rydberg state selection. 

We start by pumping into f=2, mf=0. 
 
This hyperfine state is a 
superposition of electron spin up 
and spin down. 
 
The hyperfine interaction is 
negligible at n=100. With two σ+ 
photons we can excite  97d5/2 
mj=3/2 or mj=5/2. 
 
The Rabi frequency is different for 
these two end states which leads to 
non-sinusoidal oscillations.    



Coherence of Rydberg excitation 

97d5/2 

5s1/2  

1.01 PHz  



Coherence of Rydberg excitation 

2010.6.18 

97d5/2 

5s1/2  

1.01 PHz  

T2 = 3.6 µs 



Coherence of Rydberg excitation 

2010.6.18 

Signal decays as 
 
 
 
 
 
 
T2magnetic= 6.8 µs 
 
T2Doppler  = 4.2 µs 
   

97d5/2 

5s1/2  

1.01 PHz  

2
2

2 /Tte−

T2 = 3.6 µs 



Summary 
• Excitation of Rydberg states can be performed 

coherently with modern, stabilized laser sources. 
 

• I have concentrated on the simplest case of constant in 
time, linear excitation of non-interacting atomic 
samples. 
 

• With interactions blockade plays an important role, 
      leading also to a N1/2 speedup. 
 
• Quantum interference effects can be exploited to 

achieve large optical nonlinearities (C. Adams lectures) 
 

• Temporally modulated pulse sequences such as  
STIRAP can lead to novel quantum states in interacting 
samples (K. Mølmer lectures) 



• orders of magnitude 
 

• dipole-dipole interactions: resonant limit, van 
der Waals limit 
 

• angular dependence 
 
•Ground – Rydberg interaction  
 

• ground state dressing 
 

II: Rydberg atom interactions 



Long range interactions 

10 µm 

Hz100~ µE∆

Rb-Rb ground state  
magnetostatic interaction  



Long range interactions 

10 µm 

Rydberg n=100 
van der Waals interaction  

MHz100~E∆

Rb-Rb ground state  
magnetostatic interaction  

Hz100~ µE∆

12 orders of magnitude! 



Rydberg interactions: strong and controllable 
 



Rydberg interactions: strong and controllable 
 



Rydberg interactions: strong and controllable 



Rydberg interactions: strong and controllable 
 



Th. Förster,  
Zwischenmolekulare energiewanderung  
und fluoreszenz, 

Annalen der Physik 2, 55 (1948).  

Rydberg - Rydberg interaction 

Förster resonance 

Rydberg theory: 
 
Protsenko, Reymond, Schlosser, Grangier PRA 2002 
Walker & MS, JPB 2005, PRA 2008 
Li, Tanner, Gallagher PRL 2005  
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Rydberg - Rydberg interaction 

Förster resonance 

Th. Förster,  
Zwischenmolekulare energiewanderung  
und fluoreszenz, 

Annalen der Physik 2, 55 (1948).  

Rydberg theory: 
 
Protsenko, Reymond, Schlosser, Grangier PRA 2002 
Walker & MS, JPB 2005, PRA 2008 
Li, Tanner, Gallagher PRL 2005  



ns+ns 

np+(n-1)p 

3/1~ R 6/1~ R

Resonant d-d to  van der Waals 

d1 

d2 

Vdd ~ C3/R3      C3~d1 d2   

The resonant interaction  
strength is  

VvdW ~ C6/R6   C6=C3
2/hδ    

With energy defect δ we get 

Förster  
resonance δ    



Molecular potentials 

Hamiltonian 
 
 
energy defect 
 
 
long range interaction 

Dipole-dipole operator in spherical basis 

Symmetrized states 

M=mA+mB is conserved 



Eigenvalues – van der Waals limit 

When the energy defect is large               . 

C6 ~ n11 

3U>>δ

We recover the short range van der Waals interaction 

For Rb, Cs large n, νs-νp ~ 0.5.  
This implies δ ~ 1/n4  so  C6 ~  n12 heavy alkali  

ns states  



Eigenvalues – dipole-dipole limit 

When the energy defect is small                we obtain a  
long range 1/r3 interaction 

3U<<δ

)(
3

2
2

)( 3 rUrU ±≅±
δ

)(
3

2
33

3 rU
r
C

= C3 ~ n4 

The effective dipole-dipole interaction is isotropic (for s states).  



Discussion 

This simplest case ns+ns -> n’p + n’’ p is easily solved by hand. 
 
There are many more cases “channels”. 
 
 

Walker & MS PRA (2008) 

etc…  



Discussion 

The higher angular momentum channels are generally anisotropic, and can 
have zero or small eigenvalues. 

Walker & MS PRA (2008) 

etc…  



Förster zero states 

Förster zero states are linear combinations of Zeeman levels with  
zero coupling.  
 
Consider M=mA+mB=0. Say initial states have angular momentum j,  
there are 2j+1 states with M=0.   
 
These couple to js, jt  with js ≤ jt, giving 2 js  +1 M=0 intermediate states 
 
We get zero vdW coupling to the Förster zero state |ψF> when   
  
                                                                             for all 2 js +1 coupled states 
 
 
This is 2 js +1  equations for 2j+1 unknowns.  
A Förster zero solution  typically exists  
when js <j.     
 
When js =j, no exact zero, but we always  
find very small eigenvalues.  

Walker & MS, JPB 2005, PRA 2008 



Angular structure examples 

The 43d5/2 state has a small defect  
and very strong interaction. 
 
 
  
Energy defect 7.5 MHz. 
 
There are Förster zero states, so 
strong angular dependence. 
 
We need to go to 55s to get a 
comparable strength isotropic  
interaction. 



Angular structure examples 

We can also have large asymmetries 
between s-s, s-p and p-p, interaction  
strengths. Very useful for various 
quantum gate protocols.  
 

States with |l-l’|=1 have a strong 
resonant interaction. If one of them 
is an s state the interaction is largely 
isotropic. s-p ~ 1/R3 

s-s ~ 1/R6 

L. Isenhower, M. Saffman, and K. Mølmer,  
 Quant. Inf. Proc. 10, 755 (2011). 



Discussion 

This analysis assumes a single channel dominates. At high n and small 
separation this is not a good approximation. 
 
There are 18 dipole coupled pairs of  states within +/- 4 GHz of 60p3/2+60p3/2.  



Discussion 

However, not all near resonant states play a role since the 
dipole matrix elements are concentrated at neighboring n, 
n’. 

Rb, n=55 



Discussion 
When multiple channels play a role it is easiest to use direct numerical 
diagonalization of the Hamiltonian. Easy to include Zeeman, Stark effects. 
 
 
Spaghetti physics ensues. It appears highly unlikely that Förster  zero 
interactions persist.  
 

 H= Hatomic + Hdd + HStark + HZeeman 

Including enough states to ensure convergence  is an open problem  
(I. Deutsch). 



Calculating matrix elements 

As for optical excitation there are several calculation 
methods available.  
 
Semi-classical  (WKB)    (my favorite Kaulakys, J. Phys. B, 28, 4963 (1995)) 
Coulomb wave functions  (Seaton) 
Model potentials 
 
Review: D.P. Dewangan, Physics Reports 511 (2012) 1–142 

Numerics are more challenging than for excitation from ground 
state since both wavefunctions are spatially extended.  
 
For excitation from ground state we had x2 discrepancy.  
 
In this case WKB agrees very well with Coulomb wavefunctions. 



Coulomb – WKB comparison  

Radial matrix element 
50s – n’ p1/2 

q.d. 
method 

Error : 



Ground-Rydberg interactions  

• For n~100 Rydberg-Rydberg interaction is stronger than  
ground-ground mag. dip. by 1012 , ground-ground vdW by 1017  
at 1 µm. 
 

• What about Rydberg-ground ?  Guess 3 x 108 stronger than  
ground-ground vdW.  

+ 

- Rb 

Two cases 

Ground perturber inside  
Rydberg wavefunction –  
molecular binding 
 (T. Pfau lectures) 

+ 

- 

Rb 

perturber outside, 
R > a0 n2 

Van der Waals interaction 

R 



Ground-Rydberg interactions  

+ 

- 

Rb R 

5s 

100s 
100p 

We can calculate using same  
method as for Rydberg-Rydberg 

5p 

Förster defect is essentially  
the 5s-5p splitting 12820 cm-1 
 

Putting in the matrix elements we 
find  
 
C6(100s-5s) ~ 17 (Hz µm6)  
 
The ground-ground vdW is 
 
C6(5s-5s) ~ 0.64 x 10-6 (Hz µm6)  
 
  The ratio is 0.27 x 108 This interaction is of relevance to high 

density/high precision experiments.  



Rydberg dressing of ground state interactions 

If the excitation is off-resonant the ground state atoms will be “dressed” by the 
Rydberg interaction. 
 
 
  

Ω>>∆
original proposal: 

details for few atoms: 

Relevant for nonlinear optics, atom-
optics, Quantum simulation of spin 
models 



Effective interaction 

• To find the effective nonlocal interaction consider  
   two-atoms in the basis 
 
 
 
 
Interaction picture Hamiltonian 
 
 
 
 
 
Eigenvalues give the effective interaction  
potential. 
 
Soft core form due to blockade. 



Effective interaction 

We can find the soft core 
interaction strength without  
solving the Hamiltonian 
 

 
 
 
 

Two noninteracting atoms have light shift 
 
Due to blockade only get 
 
Admixture of Rydberg in ground state 
 
                                                  Multiply 

Interaction effect 



Summary 
• Rydberg states have extraordinarily strong interactions. 

 
• The interaction can be transferred to the ground states by dressing 
 
• When one channel is dominant the problem can be solved more or 

less analytically 
 

• For multiple channels numerics are best suited 
 

• The Rydberg dipole-dipole interaction has been observed in 
experiments with many atoms: frozen Rydberg gas, line 
broadening, blockade (T. Gallagher lectures) 
 

• The interaction is crucial for quantum gate experiments (O. Morsch 
lectures) and recent single photon experiments  
 

• A quantitative observation of the dipole-dipole shift at the level of 
two atoms remains an outstanding challenge. 
 



• Optical traps and ground state (qubit) 
coherence 
 

• Ramsey spectroscopy 
 

• magic traps 
 

• traps for Rydberg atoms 
 

• 3D Rydberg atom trapping 

III: Coherence properties of ground and Rydberg traps  



Traps and coherence  

Long coherence times compared to gate times or other dynamical times  
are important for studies of quantum dynamics  
 
Several decoherence mechanisms: 
 
  collisional loss 
  
 radiative decay 
          
 light scattering 
          
 magnetic noise 
 
         electric fields 
 
         AC electric field in optical traps  
         
 motional dephasing 
         

- about 50 s. lifetime at 
10-10 mbar 

Types of traps: 
 
Electric 
 
Magnetic 
 
Optical 
 
Optical in cavities  
or near surfaces 



Radiative decay 

mF=0 
|0> 

|1> 

 
 
For hyperfine qubits the radiative lifetime is not of concern. 
For Cs the lifetime is  
 
                           T=0                 23,300 years 
                           T=300 K                 34 years 
 
In a giga-qubit room temperature Cs computer 1 decay per second 
(QEC is needed!) 

9.2 GHz 

For optical qubits metastable upper level has a finite radiative 
lifetime, 
e.g. 160 s for Sr 3P0 



Magnetic decoherence 

1 

F=2 
87Rb 5S1/2 6.8 GHz 

Ground state, single unpaired electron, L=0, S=1/2, J=1/2 
 
Nucleus, 87Rb  I=3/2, so total angular momentum F=1,2. 
 
 
 

http://www.fdu.edu/images/atom.gif


Breit-Rabi plot 

1 

F=2 
87Rb 5S1/2 6.8 GHz 

http://www.fdu.edu/images/atom.gif


Magnetostatic traps 

There are weak (magnetic) field seeking ground states. 
 
87Rb |1,-1>, |2,1>, |2,2>   

This is widely used for experiments with degenerate  
quantum gases, BEC and Fermi systems. 



Fluctuation insensitive qubit trapping 
 

1 

F=2 
87Rb 5S1/2 

mF=0 
|0> 

|1> 6.8 GHz 

0 G 

At zero B field m=0 Zeeman states are ideal qubits.  
 
Bias field needed to define quantization axis.  

http://www.fdu.edu/images/atom.gif


1 

F=2 
87Rb 5S1/2 6.8 GHz 

3.236 G 

Fluctuation insensitive qubit trapping 
 

http://www.fdu.edu/images/atom.gif


1 

F=2 
87Rb 5S1/2 6.8 GHz 

653 G 

Fluctuation insensitive qubit trapping 
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1 

F=2 
87Rb 5S1/2 6.8 GHz 

655 G 

Fluctuation insensitive qubit trapping 
 

http://www.fdu.edu/images/atom.gif


1 

F=2 
87Rb 5S1/2 6.8 GHz 

1220 G 

Fluctuation insensitive qubit trapping 
 

http://www.fdu.edu/images/atom.gif


Long coherence time magnetically trapped atoms 
 

3.236 G bias field 

1 

F=2 
87Rb 5S1/2 6.8 GHz 



Magnetostatic trap arrays 

 also, Hannaford, Hinds 

Periodicity about 20 µm 



Electrostatic traps 

Cs has a dc polarizability α=+1.0 x 10-5  Hz/(V/m)2 

giving a potential  

δx 
U 

Potential minimum at field maximum.  
 
General property of harmonic functions – no maximum inside simply 
connected domain.  (Earnshaw theorem) 
 
 
No electrostatic traps for atomic ground states. 

E 

0 



• Far off-resonance traps (FORTs): sub-micron localization, long coherence 
times. 
 

Optical traps for atoms 

                   

+ simple optics 
- more light scattering 
  and differential light shifts 

• blue  detuned  
∆=ω−ωa >0  

-  more complex optics 
+ less light scattering 
  and differential light shifts 
+ Rydberg trapping 

Position Position 

Intensity Intensity 

Uac 

Uac 

α>0 α<0 

 
• red detuned  
∆=ω−ωa <0 



Light shifts – AC Stark effect 

|e> 

γ 

An off-resonant optical field shifts the energy of 
atomic levels. This is important for optical traps, Z 
gates, and decoherence.    
 
 
 
Electric dipole interaction 
 
To first order 
 
 
However, if we go to second order in the field we 
get a nonzero     .  Write this as  
 
Then 
 
 
with α the polarizability.  

|g> 



Calculation of α 

|e> 

γ 

Use second order perturbation theory: 

The interaction involves two powers of the vector d, so 
in general α is a 2nd rank tensor with scalar, vector, and tensor parts.   
 
Let’s just consider the scalar polarizability.  Two-level model, RWA 

The polarizability is  

|g> 



Light scattering 

|g> 

|e> 

γ 

Photon scattering rate is  

so 

Excited state population  

(large detuning) 

We see that  
 
trap depth ~ 1/∆   scattering rate ~ 1/∆2 
 

At large detunings we have near ideal conservative traps.   



Light scattering and spin relaxation 
If we store a hyperfine qubit in an optical trap  
Rayleigh scattering gives  heating but largely 
preserves the quantum state.  
 
Raman scattering changes the quantum state. 
 
 
The amplitudes for Rayleigh scattering add. 
Rayleigh rate ~1/∆2. 
 
For  Raman scattering (f1 to f2) they cancel 
giving Raman rate ~1/∆4. 
 
Qualitative explanation. At large detuning  
compared to the fine structure splitting the alkali 
atom looks like a spin ½ particle, no tensor 
polarizability quantum state is preserved.  
 
Also require linear light polarization to suppress 
vector polarizability.   

qubit 

fine structure  
doublet 

p1/2 

f1 

f2 

p3/2 



Light scattering and spin relaxation 

This was accepted truth 
for 15 years.  However the  Bollinger 
group showed that also Rayleigh 
scattering can lead to decoherence 
scaling as             in some cases. 
 
 
 
 
 

1/∆2 



Optical trapping 



Optical trapping – single atoms 



Optical trapping – single atom blockade 



Optical trapping – 91% atom loading 



• With a single focused laser beam:   

Spatial Localization 

                   

mx µσ 1~2

mKkUmKT
mWPmmw

Bfa 5/,5.01.0
300,06.1,0.3

=−=
=== µλµ

mz µσ 10~2

Rb  
λD2=.78 µm U

Spatial variance 

Fluorescence image 



• A large range of optical configurations have been used 
• 3D optical lattices trap atoms at nodes of the field.  
• Bottle Beam traps (BBT) only require access from a single side  

Blue detuned traps 

trapped 
atoms 



Crossed vortex Bottle Beam Trap (BBT) 

calculated measured 



Atomic qubits in a BBT 

Lifetime 6s.  Coherence time  43 ms.  Single atom detection  



Optical resonators can serve as buildup cavities to enhance the field 
strength giving strong trapping with low optical power.  
 
Evanescent fields at surfaces have large gradients giving good 
localization.  
 

Traps near surfaces 



•Optical traps and ground state (qubit) 
coherence 
 

• Ramsey spectroscopy 
 

•magic traps 
 

• traps for Rydberg atoms 
 

• 3D Rydberg atom trapping 

III: Coherence properties of ground and Rydberg traps  



Qubit coherence – Ramsey measurement 

The envelope of the 
Ramsey fringes is related to 
the coherence time T2. 
 
Simply define T2 as the 1/e 
time.   



Ramsey measurement of decoherence 

Start in |1>, π/2 pulse 
 
wait time t 
 
π/2 pulse 
 
Probability of measuring |1> 
 
Oscillation amplitude 
 
Zero mean random process   



Magnetic decoherence 

Magnetic phase 

assume Gaussian fluctuations 
 
 
average 
 
 
 
1/e time is  



Motional decoherence 

This is due to the different trap depths seen by the two 
hyperfine states. 
 
The effect scales with the ratio of the differential light shift 
to the average shift.  
 
The analysis is more complicated than for magnetic 
decoherence. Need to average over the motional states in 
the harmonic trap.  
 
Find Ramsey envelope  

This more complicated behavior is well  
approximated by a Gaussian  



Extracting T2 

Decoherence due to 
magnetic field and 
differential light shift 
 
model as: 
 
extract: 
 
T2 B=3.5 G    = 7.1 ms 
 
T2 B=0.5 G    = 50 ms 
 
T2 optical trap = 2.6 ms 

2
2

2 /Tte−

Matching to theory for T2 implies     δBrms = 50 mG  
                                                               Ta = 85 µK 

two sources of decoherence 



•Optical traps and ground state (qubit) 
coherence 
 

• Ramsey spectroscopy 
 

• magic traps 
 

• traps for Rydberg atoms 
 

• 3D Rydberg atom trapping 

III: Coherence properties of ground and Rydberg traps  



State insensitive or “magic” trapping 

Rempe, Kimble,… 



Magic trapping for s and p states 

Cs levels 



Magic qubit trapping 

|0> 

|1> 

|p> 

qubit 

cooling, 
Measurement, 
gates 

|r> Rydberg 
gates 

red detuned 
trap laser 

qubit levels 
get closer 

blue detuned 
trap laser 

qubit levels 
get closer 

∆ 

ωhf 



Magic qubit trapping 

|0> 

|1> 

|p> 

qubit 

cooling, 
Measurement, 
gates 

|r> Rydberg 
gates 

red detuned 
trap laser 

qubit levels 
get closer 

To make the qubit frequency  
independent of trap intensity 
tune in between the levels. 
 
Small detuning – large scattering 
rate, but only need small intensity 
to compensate trap.  



untrapped 
atoms  

Rabi spectroscopy 

trapped 
atoms  

compensated 
trap 



Doubly magic qubit trapping 

Qubit hyperfine transition insensitive to both magnetic and intensity 
fluctuations ! 



Doubly magic qubit trapping 



•Optical traps and ground state (qubit) 
coherence 
 

• Ramsey spectroscopy 
 

• magic traps 
 

• traps for Rydberg atoms 
 

• 3D Rydberg atom trapping 

III: Coherence properties of ground and Rydberg traps  



Traps for Rydberg atoms 

• Many experiments with cold Rydberg atoms would be 
enhanced if we could trap Rydberg states: 
 

Quantum gates, Rydberg-ground dressing, precision atomic measurements, 
Casimir-Polder studies,.. 
 
• Electrostatic and magnetostatic Rydberg trapping has been 

demonstrated. 
 
 
 
 
 
 

• We use light for excitation, so optical traps would be 
convenient 

Hogan, S. D., and F. Merkt,  “Demonstration of three dimensional 
electrostatic trapping of state-selected Rydberg atoms,”  
Phys. Rev. Lett. 100, 043001 (2008). 

Choi, J.-H., J. R. Guest, A. P. Povilus, E. Hansis, and G. Raithel, “Magnetic trapping of 
long-lived cold Rydberg atoms,” Phys. Rev. Lett. 95, 243001 (2005). 



Optical Traps for Rydberg atoms 

• Core polarizability is negligible. 
 

• Rydberg polarizability is that  
of a free electron. 
 
•To trap Rydberg atom need  blue detuned trap. 
 

• Choose wavelength and trap size so  
ground-Rydberg potentials are matched. 
 

+ 

- 

α<0 



Ground-Rydberg magic trapping 



Ground-Rydberg magic trapping 

Calculate effective light shift with  
|ψ|2 weighting of optical intensity  

Delocalized Rydberg wavefunction 
sees different intensity than ground 
state atom.   



Ground-Rydberg magic trapping 

Any wavelength for which ground and Rydberg 
states have negative α and |αg| >|αRyd| can be used. 



Ground-Rydberg magic trapping 

We calculated light shifts for several BBT designs. 

Adding a finite intensity at trap center 
gives ground – Rydberg matching 



•Optical traps and ground state (qubit) 
coherence 
 

• Ramsey spectroscopy 
 

•magic traps 
 

• traps for Rydberg atoms 
 

• 3D Rydberg atom trapping 

III: Coherence properties of ground and Rydberg traps  



Observation of ponderomotive Rydberg potential 

Lattice induced 
shift of µwave 
spectra used to 
measure trapping. 
 
This is a 2D trap. 

Red detuned trap 
is inverted during 
excitation. 



Rydberg excitation in a BBT 
Two photon excitation via 7p1/2 using 459 and 1038 nm  
lasers. Highly stabilized and referenced to frequency comb. 
 
 
 

Data taken on 61d3/2 level.  

spectroscopy 1 µs 

Rydberg data was taken while keeping the trap light on. 

Rabi oscillations 



Rydberg trapping 

Γsp 
Γtrap 

1038 nm 

Γ1038 

Rate eq. model, global fit to three 
different pulse sequences gives  

τsp     = 79 µs  (calculated)   
τ1038 = 16 µs 
τtrap   = 390 µs 

61d3/2  

strong evidence  
for Rydberg trapping 

Pulse time P(
gr

ou
nd

) 

Detection efficiency  
16/79=20% 
P(r) = 0.8 

1 µs 



Rydberg trap lifetime  
BBT on 

t (µs) 

at
om

 re
te

nt
io

n 

BBT off 

at
om

 re
te

nt
io

n 

τ = 17 µs 

τ = 120 µs 

The trap lifetime is directly measured  
by blowing away non-Rydberg excited atoms. 

3 850 nm 

61d3/2  

1 
2 
t 4 



Rydberg trap lifetime  
BBT on 

t (µs) 

at
om

 re
te

nt
io

n 

BBT off 

at
om

 re
te

nt
io

n 

τ = 17 µs 

τ = 120 µs 

61d3/2  A Monte Carlo simulation 
including black body 
redistribution to other Rydberg 
levels (which are also trapped) 
gives a predicted lifetime 
before return to ground state of 
143 µs.  
 
This implies a trap lifetime  
 
        τBBT> 750 µs. 
  
This data is preliminary. 
 



Rydberg trap shift  

BBT on 

Laser frequency 

R
yd

be
rg

 s
ig

na
l 

BBT off 

R
yd

be
rg

 s
ig

na
l 

Line center is about 130 kHz 
higher with trap on.  
 
About 6.5 µK in temperature units. 
 
We did not expect perfect magic  
trapping with this trap. 
 
It should be possible to tune the trap 
shift close to zero in the future.  

61d3/2  



Summary 

• Optical traps can hold neutral atoms with 
excellent coherence properties 
 

• Rydberg atoms can be confined in bottle-beam 
type traps 
 

• It is possible to design ground-Rydberg magic 
traps 
 

• Experiments are showing clear evidence of 
Rydberg trapping 



Rydberg atoms:  
excitation, interactions, trapping  

I: Coherent excitation of Rydberg states 
 

II: Rydberg atom interactions 
 

III: Coherence properties of ground and 
Rydberg  atom traps 

http://racinenews.org/files/2009/02/uw-madison-logo.png
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